Air-cathode structure optimization in separator-coupled microbial fuel cells.

نویسندگان

  • Xiaoyuan Zhang
  • Haotian Sun
  • Peng Liang
  • Xia Huang
  • Xi Chen
  • Bruce E Logan
چکیده

Microbial fuel cells (MFC) with 30% wet-proofed air cathodes have previously been optimized to have 4 diffusion layers (DLs) in order to limit oxygen transfer into the anode chamber and optimize performance. Newer MFC designs that allow close electrode spacing have a separator that can also reduce oxygen transfer into the anode chamber, and there are many types of carbon wet-proofed materials available. Additional analysis of conditions that optimize performance is therefore needed for separator-coupled MFCs in terms of the number of DLs and the percent of wet proofing used for the cathode. The number of DLs on a 50% wet-proofed carbon cloth cathode significantly affected MFC performance, with the maximum power density decreasing from 1427 to 855 mW/m(2) for 1-4 DLs. A commonly used cathode (30% wet-proofed, 4 DLs) produced a maximum power density (988 mW/m(2)) that was 31% less than that produced by the 50% wet-proofed cathode (1 DL). It was shown that the cathode performance with different materials and numbers of DLs was directly related to conditions that increased oxygen transfer. The coulombic efficiency (CE) was more affected by the current density than the oxygen transfer coefficient for the cathode. MFCs with the 50% wet-proofed cathode (2 DLs) had a CE of >84% (6.8 A/m(2)), which was substantially larger than that previously obtained using carbon cloth air-cathodes lacking separators. These results demonstrate that MFCs constructed with separators should have the minimum number of DLs that prevent water leakage and maximize oxygen transfer to the cathode.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrochemical analysis of separators used in single-chamber, air-cathode microbial fuel cells

Polarization, solution-separator, charge transfer, and diffusion resistances of clean and used separator electrode assemblies were examined in microbial fuel cells using current–voltage curves and electrochemical impedance spectroscopy (EIS). Current–voltage curves showed the total resistance was reduced at low cathode potentials. EIS results revealed that at a set cathode potential of 0.3 V di...

متن کامل

Using a glass fiber separator in a single-chamber air-cathode microbial fuel cell shortens start-up time and improves anode performance at ambient and mesophilic temperatures.

A shorter start-up time and highly negative anode potentials are needed to improve single-chamber air-cathode microbial fuel cells (MFCs). Using a glass fiber separator reduced the start-up time from 10d to 8d at 20°C, and from 4d to 2d at 30°C, and enhanced coulombic efficiency (CE) from <60% to 89% (20°C) and 87% (30°C). Separators also reduced anode potentials by 20-190mV, charge transfer re...

متن کامل

Tetracycline Antibiotic Removal from Wastewater via Air-Cathode Microbial Fuel Cells

Background and objective: Tetracyclines are the second most used group of antibiotics in the world. This type of antibiotic has a weak attraction in the body and enters wastewater through urine and feces. This study investigated the effectiveness of tetracycline removal from wastewater by air-cathode microbial fuel cells. Materials and methods: The current study was bench-scale experimental re...

متن کامل

Polymer separators for high-power, high-efficiency microbial fuel cells.

Microbial fuel cells (MFCs) with hydrophilic poly(vinyl alcohol) (PVA) separators showed higher Coulombic efficiencies (94%) and power densities (1220 mW m(-2)) than cells with porous glass fiber separators or reactors without a separator after 32 days of operation. These remarkable increases in both the coublomic efficiency and the power production of the microbial fuel cells were made possibl...

متن کامل

Spray-on polyvinyl alcohol separators and impact on power production in air-cathode microbial fuel cells with different solution conductivities.

Separators are used to protect cathodes from biofouling and to avoid electrode short-circuiting, but they can adversely affect microbial fuel cell (MFC) performance. A spray method was used to apply a polyvinyl alcohol (PVA) separator to the cathode. Power densities were unaffected by the PVA separator (339±29mW/m(2)), compared to a control lacking a separator in a low conductivity solution (1m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biosensors & bioelectronics

دوره 30 1  شماره 

صفحات  -

تاریخ انتشار 2011